Fast numerical upscaling of heat equation for fibrous materials

نویسندگان

  • Oleg P. Iliev
  • Raytcho D. Lazarov
  • Joerg Willems
چکیده

We are interested in numerical methods for computing the effective heat conductivity of fibrous insulation materials, such as glass or mineral wool, characterized by low solid volume fractions and high contrasts, i.e. high ratios between the thermal conductivities of the fibers and the surrounding air. We consider a fast numerical method for solving some auxiliary cell problems appearing in this upscaling procedure. The auxiliary problems are boundary value problems of the steady-state heat equation in a representative elementary volume occupied by fibers and air. We make a simplification by replacing these problems with appropriate boundary value problems in the domain occupied by the fibers only. This common approach in the engineering practice has been theoretically justified for high contrast materials in a recent paper to which the authors contributed. Finally, the obtained problems are further simplified by taking advantage of the slender shape of the fibers and assuming that they form a network. A discretization on the graph defined by the fibers is presented and error estimates are provided. The resulting algorithm is discussed and the accuracy and the performance of the method are illusrated on a number of numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simplified Method for Upscaling Composite Materials with High Contrast of the Conductivity

An efficient approach for calculating the effective heat conductivity for a class of industrial composite materials, such as metal foams, fibrous glass materials, and the like, is discussed. These materials, used in insulation or in advanced heat exchangers, are characterized by a low volume fraction of the highly conductive material (glass or metal) having a complex, network-like structure and...

متن کامل

Heterogeneity Preserving Upscaling for Heat Transport in Fractured Geothermal Reservoirs

In simulation of fluid injection in fractured geothermal reservoirs, the characteristics of the physical processes are severely affected by the local occurence of connected fractures. To resolve these structurally dominated processes, there is a need to develop discretization strategies that also limit computational effort. In this paper we present an upscaling methodology for geothermal heat t...

متن کامل

A truly meshless method formulation for analysis of non-Fourier heat conduction in solids

The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...

متن کامل

Numerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets

In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra  integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computat. and Visualiz. in Science

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2010